Single-photon emission computed tomography (SPECT, or less commonly, SPET) is a nuclear medicine tomographic imaging technique using gamma rays. It is very similar to conventional nuclear medicine planar imaging using a gamma camera. However, it is able to provide true 3D information. This information is typically presented as cross-sectional slices through the patient, but can be freely reformatted or manipulated as required.
The basic technique requires injection of a gamma-emitting radioisotope (called radionuclide) into the bloodstream of the patient. On occasion, the radioisotope is a simple soluble dissolved ion, such as a radioisotope of gallium(III), which happens to also have chemical properties that allow it to be concentrated in ways of medical interest for disease detection. However, most of the time in SPECT, a marker radioisotope, which is of interest only for its radioactive properties, has been attached to a specific ligand to create a radioligand, which is of interest for its chemical binding properties to certain types of tissues. This marriage allows the combination of ligand and radioisotope (the radiopharmaceutical) to be carried and bound to a place of interest in the body, which then (due to the gamma-emission of the isotope) allows the ligand concentration to be seen by a gamma-camera.

Source: Wikipedia


  • SPET
  • single-photon emission computed tomography